The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 2 2 X X X X 0 X 0 0 0 X X X 0 0 0 0 X X X X 0 0 0 0 X X X X 0 0 0 0 X X X X 2 2 2 2 2 2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 2 X+2 X X X+2 X X X 0 2 0 0 0 X 0 X X X 0 0 0 X X X X 0 0 2 2 X+2 X+2 X+2 X+2 2 2 2 2 X+2 X+2 X+2 X+2 2 2 X X 2 X X 0 2 X+2 0 X X+2 2 X 0 2 X+2 X+2 2 2 X+2 X+2 2 X 0 0 X X+2 X 2 0 0 X 0 X+2 X 0 X 2 X 0 X+2 2 2 0 0 2 2 0 0 0 X X 0 X X 2 X+2 X+2 2 2 X+2 X+2 2 2 X X+2 0 2 X X+2 0 0 X+2 X 2 0 X+2 X 2 2 X+2 X 0 X X 0 0 X X X X 0 0 2 2 X+2 X+2 X+2 X+2 0 0 X+2 X+2 2 X+2 2 0 X 2 0 2 X+2 X X X 2 2 0 0 2 X+2 2 X+2 0 0 2 generates a code of length 79 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 76. Homogenous weight enumerator: w(x)=1x^0+128x^76+148x^78+122x^80+72x^82+32x^84+4x^86+4x^88+1x^128 The gray image is a code over GF(2) with n=316, k=9 and d=152. This code was found by Heurico 1.16 in 38.8 seconds.